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Abstract

Multivariable analyses are complex statistical methods to 
evaluate the impact of multiple variables on outcomes of  
interest. Books have been written on each of these methods 
detailing the mathematical and statistical objectives and pro-
cesses. However, we have found very little in the way of brief 
reports that help the nonstatistically trained physician obtain 
a basic understanding of multivariable analyses in order to 
have some understanding of the increasing literature using 
these methods. This work is organized in 2 parts. This article, 
Part A, addresses the “big 4” algebraic methods of multivari-
able analysis. The primary focus of Part A is to present a brief 
“primer” to help the reader understand the methods and 
uses; it expressly avoids the many details of statistical assump-
tions, calculations, and myriad branching alternatives. Part B 
will concentrate on conjunctive consolidation and will focus 
on enough information to allow the interested reader to  
actually perform the analysis. For the statistical scholar, we 
have included references to several voluminous serious works.
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We are familiar with concentrating on one experi-
mental independent, predictor variable (eg, treat-
ment) relating to one dependent, outcome variable 

(eg, outcome). However, many nonexperimental baseline 
variables inherent in test subjects (eg, age, race, sex, socioeco-
nomic level, comorbidities) or in the application of the treat-
ment (eg, quality of performance, time of performance, 
duration, dosage) may influence the outcome. Multivariable 
analyses are used to explore and determine which other inde-
pendent (predictor) variables might play a role in confounding 
or modifying the effect on one or more dependent (outcome) 

variables; these nonexperimental variables that might influ-
ence the outcomes are called covariates.1 Multivariable ana-
lytic methods are complex statistical techniques. The objective 
of this guide is to help readers of all backgrounds understand 
these methods conceptually; as such, detailed explanations of 
some of the deeper mathematical derivations are excluded.

Multivariable analyses may be used to (1) identify baseline 
variables that have significant effects on the outcome of inter-
est in addition to the intervention being tested; (2) improve 
hypothesis testing by controlling for important covariates; (3) 
identify possible etiologic factors leading to disease; (4) estab-
lish “weights,” which reflect the relative importance, of vari-
ables used in diagnostic or prognostic scoring systems; and (5) 
develop new rating scales.2,3

The many multivariable techniques are too numerous to 
mention. However, there are 2 general methods to approach 
multivariable analysis: (1) fit data into mathematical models 
and/or (2) arrange data into clusters. Feinstein2 characterized 
the mathematical models into the “big 4”: multiple linear 
regression, multiple logistic regression, proportional hazard 
(Cox) analysis, and discriminant function analysis. Arranging 
data into clusters is often performed using conjunctive con-
solidation. In this article, we present the essence of the math-
ematical models in a way, it is hoped, that will be understandable 
and useful in reading articles using multivariable analyses. 
The objective is not to present the enormous details that fill 
books on each method but to accurately present enough infor-
mation that will allow to reader to better understand the 
“what” and “why” these methods have use. Conjunctive con-
solidation will be discussed in a subsequent article.

The multivariable analytic algebraic method of choice 
depends on the data scale in which the dependent variable is 
reported (Table 1).2-4 Feinstein2 emphasized, “The choice of 
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analytic methods is seldom affected by the type of data con-
tained in the independent variables” (emphasis added).

The general configuration of the multivariable mathemati-
cal models is in the form of regression. The usual linear 
regression model for bivariate analysis (one dependent vari-
able and one independent variable) is

Y = a + bX,

where Y is the dependent variable; a is the intercept, also 
known as the constant (the value of Y when X is 0); b is the 
slope of the line, also known as the regression coefficient, 
which shows the impact of X on Y; and X is the independent 
variable.5

The generic algebraic model for all 4 multivariable analy-
ses is2

G = b
0
 + b

1
X

1
 + b

2
X

2
 + b

3
X3 . . . ,

where G is the dependent variable relative to analysis; b
0
 is the 

intercept (value of G when X is 0); b
1
, b

2
, b

3
, and so on are the 

regression coefficients showing the impact of X on G; and X
1
, 

X
2
, X

3
, and so on are the independent variables (Table 2).

In building the candidate independent (predictor) variables to 
be included in the multivariable model, several factors are con-
sidered for each: (1) Does it make biological sense? (2) Have 
previous articles or pilot projects suggested it is important? (3) 
Does bivariate analysis show it is statistically significant? 

Candidate variables should (1) significantly correlate with the 
outcome variable, and (2) they should not highly correlate with 
each other (known as collinearity). The ideal multivariable model 
should have the smallest number of variables predicting the larg-
est amount of variation.6 A loose rule of thumb suggests that for 
every variable included in the model, at least 10 subjects who 
develop the outcome of interest should be available.7

The first step in multivariable analysis is to determine 
which variables are statistically significant in bivariate analy-
sis relative to the outcome of interest. Table 3 shows the 
results of bivariate analysis of an arbitrary sample data set.

Multiple Linear Regression
The objective of linear regression is to find the line that best 
fits the data. To begin to understand the computational pro-
cess, the data of 2 arbitrary variables are displayed in a scatter 
plot in Figure 1. The target dependent variable (outcome) is 
displayed on the y-axis, and the independent (predictor) vari-
able is on the x-axis. If this is done once, as in this figure, it 
is simple linear regression. If this is done for more than one 
independent variable to see how they affect the outcome, it is 
multiple linear regression. Note, however, that multiple linear 
regression is not just a series of simple linear regressions; it is 
a regression that combines multiple independent variables 
that affect a single outcome into one equation, as shown ear-
lier in the “generic equation.”

Computer programs generating a regression line from the 
actual sample data attempt to find a line that best fits the data. 
The fit of the data is measured with the residual value, which 

Table 1. Selection of Multivariable Methods by Scales of Dependent Variable2

Dependent Variable Scale Method

Continuous (sometimes ordinal or binary) Multiple linear regression
Ordinal None—however, can be performed using linear or logistic techniques
Dichotomous (binary), nominal (sometimes ordinal) Multiple logistic regression
“Moving” binary (survival curves) Cox proportional hazard
Nominal (sometimes binary) Discriminant function analysis

Categorical variables: ordinal, dichotomous (binary), and nominal.

Table 2. Characteristics of Multivariable Methods

Method Characteristic Function Formula

Multiple linear regression Predicts the value of Y, given Xs Y = b
0
 + b

1
X

1
 + b

2
X

2
 + etc

Multiple logistic regression Predicts the probability (or odds) of Y 
occurring, given Xs

Probability: P Y e b b X b X( ) / ( )= + − + + +1 1 0 1 1 2 2 etc

Odds: *Log (odds) = b
0
 + b

1
X

1
 . . . b

n
X

n
Cox proportional hazards 

regression
Predicts the probability of event occurring at 

time t, for an individual
Y

i,t
 = S(t)eG

*Log(h
i
t/h

0
t) = b b x x b x xn n n0 1 1 1+ −( ) …+ −( )

Discriminant function analysis Attempts to discriminate between nominal 
groups using mathematical models

L = b
0
 + b

1
X

1
 + b

2
X

2
 + b

3
X

3
 . . .

Note: G (dependent variable for the method) changes as the method changes; for example, G in multiple linear regression is Y, and in multiple logistic regres-
sion, G is P(Y). G in Cox proportional hazards regression is used as a double exponent, and in discriminant function analysis, G is L.2

*Personal communication with Kenneth Schechtman, PhD.
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is the value of the amount of deviation of the observed data 
from the predicted regression line. The residual value can be 
positive or negative. The goal of regression analysis is to min-
imize the residual values or, in other words, derive a linear 
relationship that has the smallest values of residuals. The best 
fit typically uses “least squares”; this means squaring each 
actual value deviation from the predicted regression line (giv-
ing all the residuals a positive sign) and adding all these 
squared values. To use this technique of minimization of 
residual values, a number of very specific statistical assump-
tions must be met. The details of these assumptions are beyond 
the scope of this article; however, it does emphasize the need 
for a well-versed statistician to be in consultation.

A multiple linear regression was performed on the arbitrary 
sample data set using SPSS version 20 (SPSS, Inc, an IBM 
Company, Chicago, Illinois); the results are seen in Table 4. 
In this example, the overall model is significant (P < .05) in 
predicting the outcome. In the coefficients portion of the table, 
the only variable in the model that was statistically significant 
was variable A. In multiple linear regression, B or beta 

regression coefficients show the predicted change in Y with 
each unit change in X (relative to the specific independent 
variable), with all other independent variables held constant.6 
The sign of the beta coefficient tells the direction of change in 
Y caused by X. The unstandardized B coefficient is calculated 
in the units specific for that variable. However, the standard-
ized beta regression coefficients reflect the comparative 
impacts between the independent variables on the dependent 
variable because standardization removes the various units 
used to measure these variables.

For the example in Table 4, the B regression coefficients 
seem to all have close to the same degree of influence on out-
come. However, they suggest that a unit change in variables A 
and C tends to increase the dependent target outcome variable 
E, and a unit change in variables B and D tends to decrease the 
dependent variable E (based on the signs of the coefficients). 
However, only variable A has a statistically significant effect 
on outcome. When comparing the gradient impacts of the 
independent variables by looking at the standardized beta 
regression coefficients, variable A has a much greater impact 
on the dependent variable (outcome) than do the others when 
the units in which those variables are measured are removed.

Multiple Logistic Regression
Multiple logistic regression predicts the probability (or better, 
the odds) of Y occurring, given X,8 unlike multiple linear 
regression, which predicts the value of Y, given one or more 
Xs (Table 2). The name logistic refers to the process of using 
logarithms (in this case, the natural log, base e). When the 
outcome variable is dichotomous (binary), it cannot behave in 
a linear fashion and therefore fails to meet the fundamental 
assumption for linear regression. However, by using logarith-
mic transformation, the relationship between the variables 
behaves closer to a linear relationship. In this case, the loga-
rithmic transformation of a linear regression equation is 
called a logit.8 Note that in Table 2, the exponent of e has the 
same form as the independent variable side of the multiple 
linear regression equation (b

0
 + b

1
x

1
 + b

2
x

2
 + . . .).

Next, we must review probability and odds. Probabilities 
are proportions (ratios, fractions) ranging between 0 (impos-
sible) and 1 (certain). Fundamentally, a probability is a ratio of 
a frequency count of occurrences of events divided by all pos-
sible events.9 Knowing one probability, we can rapidly obtain 
the converse probability as follows. If the probability of event 
is P = 0.25, then the probability of not getting the event is 1 – 
P, also known as Q, = 0.75. If the 2 ratios are divided, we get 

Table 3. Bivariate Analyses: 5-Year Survival Fixed-Point Analysis (Comparison Groups:  Alive and Dead at 5 Years)

Variable A 
(Continuous Scale)

Variable B  
(Ordinal)

Variable C  
(Ordinal)

Variable D  
(Ordinal)

Variable E 
(Continuous Scale)

Variable F 
(Continuous Scale)

P value <.001 .477 .344 .342 <.001 .977
Test t test Mann-Whitney Mann-Whitney Mann-Whitney t test t test

Variables A and E are statistically significant using bivariate analysis.

Figure 1. Illustration of scatter plot of arbitrary data showing 
individual data points, regression line fitting the data, and residuals. 
By convention, the independent (predictor) variable is on the x-axis 
and the dependent (outcome) variable is on the y-axis.
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an odds ratio such as P/1 – P = P/Q = 0.25/0.75 = 0.333 or 1/3, 
stated as there is a 1 to 3 odds of an event or conversely a 3 to 
1 odds for not having an event. Note that when we talk of a 
probability, it is a single fraction. When we speak of odds, it is 
a ratio of 2 fractions, and the result is spoken of as though it 
were one thing “odds.”

Getting back to logistic regression, which predicts the 
probability of Y occurring, given X, if Ŷ  is the estimated (pre-
dicted) occurrence, then the odds (odds ratio) of occurrence is 
Ŷ /(1 – Ŷ  ). If this is logarithmically transformed, it becomes a 
logit ln(P/Q) or ln[Ŷ  /(1 – Ŷ  )].2 ln stands for natural logarithm. 
The “natural log” base is written as e; the value of e is 
2.718281828. For example, the Log

e
 100 = 4.60517.

Logistic regression for the arbitrary sample data is seen 
in Table 5. The binary dependent, target variable (eg, sur-
vival status at 5 years) is coded 0 (dead) or 1 (alive), and 
the independent variables are in differing scales. The result-
ing coefficients (Exp(B)) may be interpreted as odds 
ratios.2,8 When all the sensible variables were included in 
the logistic model, only variable E was significantly pre-
dictive of being alive at 5 years. Using the Exp(B), the odds 
of surviving 5 years is increased by 1.321 for every unit 
increase in variable E.

Cox Proportional Hazards 
Regression

Classic survival curves, such as the Kaplan-Meier curve,10 
can be modified for more detailed analysis by multiple base-
line variables. If these prognostic baseline variables are favor-
able, the curves may be better than if not favorable. The 
purpose of the Cox proportional hazard regression is to esti-
mate the probability of an event for a single person at a spe-
cific time.1,2 It is not used to assess the entire curve; the 
log-rank test is used to compare the differences between 
whole Kaplan-Meier curves.1

In a survival curve (such as a Kaplan-Meier curve) for an 
entire group, S(t) is the proportion of survivors at time t. When 
S(t) is raised to the double exponent power eG, the result is an 
estimation of the survival of a person (i) at time (t) (written  
Ŷ 

i,t 
). The “hat” ^ above a letter indicates that it is an estimate; 

Y without a “hat” would be the actual observed value. G con-
tains a modification of the predictor variables in the general 
formula G = b

0
 + b

1
X

1
 + b

2
X

2
 . . . and so on, as seen in the 

previous formulas (Table 2).
The value of the Cox proportional hazards regression is to 

determine the impact of baseline variables on the survival 

Table 4. Multiple Linear Regression

Model 1 Sum of Squares Mean Square F P  Value

Regression 1390.102 347.526 11.243 < .001
Residual 463.655 30.910  
Total 1853.757  

Coefficients

 Unstandardized Coefficients
Standardized 
Coefficients  

Model 1 B Standard Error β t P  Value

(Constant) 4.489 5.106 .879 .393
Variable A (continuous scale) .572 .085 .880 6.698 < .001
Variable B (ordinal) –.756 1.261 –.079 –.599 .558
Variable C (ordinal) .733 .603 .160 1.216 .243
Variable D (ordinal) –.673 1.298 –.068 –.519 .612

Dependent variable: variable E.

Table 5. Logistic Regression (Dependent Variable Fixed-Point Analysisa: Survival at 5 Years)

Variables in the Equation

 95% CI for Exp(B)

 B SE Wald df Significance Exp(B) Lower Upper

Step 1
    Variable E .279 .121 5.309 1 .021 1.321 1.042 1.674
    Constant –5.290 2.196 5.805 1 .016 .005  

Abbreviation: CI, confidence interval.
aIn this example, fixed-point analysis at 5 years rather than time-to-event data using Kaplan-Meier curves as for Cox regression.
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curve for an individual and is reported as a hazard ratio (much 
like one would see with an odds ratio).11 It is a method of look-
ing at multiple variables as they might influence a moving 
target (eg, time to event, such as tumor recurrence). It should 
be emphasized that the Cox proportional hazard model is quite 
complex and often requires consultation with a statistician for 
both proper analysis and interpretation.1

Discriminant Function Analysis
Uniquely different from the other multivariable analytic 
methods, which focus on one dependent variable, this method 
seeks to derive a mathematical model for many dependent 
unranked nominal (named) variables as targets, such as diag-
nostic categories (trauma, metabolic, infectious, congenital, 
rheumatological disease). Ultimately, the effort is to derive 
discriminant function lines (L) that incorporate multiple inde-
pendent variables (X

1
, X

2
 . . ., etc), such as serological tests, 

electrical tests, and imaging, using the standard linear regres-
sion formula L = b

0
 + b

1
X

1
 + b

2
X

2
 . . . and so on to derive the 

probability of each diagnostic category and then use these 
lines to separate the dependent nominal variables into groups 
that are different from each other.2

This technique is complex and somewhat arbitrary. It is 
infrequently used today in biomedical research. It is men-
tioned here only to identify that such analyses can potentially 
be done but are fraught with difficulty. Linear and logistic 
regression techniques are currently more useful.

Summary
Multivariable analyses are used to explore and determine 
which independent (predictor) variables, in addition to 
experimental interventions, play a role in predicting one or 
more dependent (outcome) variables. These nonexperimen-
tal variables that might influence the outcomes are called 
covariates.

Goals of multivariable analysis are to (1) identify baseline 
variables that have significant effects on the outcome of inter-
est in addition to the intervention being tested, (2) improve 
hypothesis testing by controlling for important covariates, (3) 
identify possible etiologic factors leading to disease, (4) estab-
lish weights of variables used in diagnostic or prognostic scor-
ing systems, and (5) develop new rating scales.

There are two methods to approach multivariable analysis: 
(1) fit data into mathematical models and/or (2) arrange data 
into clusters. The “big 4” of the mathematical models are mul-
tiple linear regression, multiple logistic regression, propor-
tional hazard (Cox) analysis, and discriminant function 
analysis. Arranging data into clusters, such as in conjunctive 
consolidation, is the second category of multivariable analy-
sis, which will be discussed in detail in Part B.

In this article, we present the essence of the mathematical 
models in a way, it is hoped, that will be understandable and 
useful in reading articles using multivariable analyses. The 
objective was not to present the enormous details that fill 
books on each method but to accurately present enough infor-
mation that will allow the reader to better understand the 
“what” and “why” these methods have use.
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