Lumbar Transversus Abdominis Plane (TAP) Block: Does volume make a difference?

Dr. Mauricio Forero, Assistant Professor, McMaster University,

Dr. Andrew Heikkila, PGY2 Anesthesia, McMaster University,
Hamilton, Ontario
Background

- An important component of pain after abdominal surgery derives from the incision itself.
- Afferent nerves course through the neurofascial plane between the internal oblique and transversus abdominis muscles.
- Nerves supplying the anterior abdominal wall are derived from T6-L1.
Background

- The lumbar Transversus Abdominis Plane (TAP) block was described by Rafi in 2001 as a means of blocking the distal nerve endings from T6-L1 dermatomes as they pass through the Petit triangle.
- Ultrasound-guided technique was then described by Hebbard.

Reg Anesth Pain Med 2007; 32:399-404
Background

Advantages of Ultrasound vs. Blind Technique

• Triangle of Petit technically difficult to palpate in obese patients.

• Cadaveric study has shown that the Triangle of Petit is more posterior than the literature suggests.
 Zorica B. Anesthesia and Analgesia 2009; 109:981-985

• **US** guidance reduces the block time and number of attempts, and decreases the block onset time.
 UltScand 2008; 52: 727–37
Background

Cadaveric studies have demonstrated variable dye spread after lumbar TAP.

McDonnell et al.
- “double pop” blind technique in 3 fresh unfixed cadavers (20 cc methylene blue dye).
- result: Deposition of dye in TAP plane between iliac crest and inferior costal (nerve or dermatomal involvement not defined)

Regional Anesthesia and pain Medicine. 2007; 32:399-404

Tran et al
- US guided technique in 10 frozen unembalmed cadavers, defrosted before injection (20 cc aniline blue dye)
- results: Segmental nerves involved: T10 (50%), T11 (100%), T10 (100%), L1 (93%).

BJA 2009; 102(1):123-127
Observational studies

McDonnell et al.
- ‘double pop’ blind technique in 3 volunteers (20 cc lidocaine 0.5% bilaterally)
- Result: Sensory block at 2 hrs: T7-L1 by pin prick.
 Regional Anesthesia and Pain Medicine. 2007; 32:399-404

Shibata et al.
- Expert opinion, not published
- US guided TAP block in 26 patients undergoing laparoscopic gynecologic surgery.
- Results: Sensory block at 30 minutes: T10 max
 Anesthesia and Analgesia. 2007; 205(3): 883
Bottom line from observational studies and cadaveric studies

• The lumbar TAP block is currently suggested for infraumbilical incisions (T10 to L1)
Because it is thought that the lumbar TAP block only reliably blocks to T10 dermatome, Hebbard described an alternative ‘oblique subcostal’ TAP block.

At the level of xiphoid process local anesthetic is first injected between transversus abdominis and rectus abdominis, following which the needle is moved infero-lateral between the TAP to reach more nerves.

20 blocks showed a mean block height (by ice) as a proportion of the distance between xiphoid process and pubis of 0.86 (0.82-0.90)
Subcostal TAP Block

Problems with this technique:
- It is not a single shot technique – requires excessive needle movement under ultrasound guidance, which may increase the risk of neurovascular or GI injury
- No studies have validated its clinical utility and safety
Subcostal vs. Lumbar

Lee et al.

• Comparison of extent of sensory block following subcostal and lumbar US guided approaches
 - Observational study
 - Total of 81 blocks in 50 patients
 - Local anesthetics
 20 cc Ropivacaine 0.5% if bilateral
 20 cc Ropivacaine 1% if unilateral
Subcostal vs. Lumbar

Results:

- Subcostal: Highest level reached: T8
- Posterior/Lumbar: Highest level reached: T10

Conclusion:

Using 20 cc of local anesthetic, the lumbar approach appears more appropriate for lower abdominal surgery and the subcostal approach is better suited to upper abdominal surgery.

Anesth Intensive Care: 2010;38:452-460
What is the current TAP block EBM?

<table>
<thead>
<tr>
<th>References</th>
<th>Surgical procedure</th>
<th>TAP block procedure</th>
<th>Post-operative analgesics</th>
<th>Effect on analgesic requirements</th>
<th>Effect on pain</th>
<th>Effect on sedation</th>
<th>Effect on PONV</th>
<th>Oxford Quality Score (0-6)</th>
<th>Oxford Validity Score (1-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonnell et al.</td>
<td>Large bowel resection</td>
<td>15/25</td>
<td>20mg lignocaine 3.75 mg/ml bilateral, LOR-technique via the triangle of Petit</td>
<td>General anaesthesia with propofol and fentanyl</td>
<td>Pancuronium 1mg, dexamethas 100 mg/ml and morphine</td>
<td>PCA-morphine reduced from 80 mg to 22 mg/24h</td>
<td>VAS reduced at rest and during mobilization at 0-24h post-op</td>
<td>Sedation scores reduced at 4 and 6h post-op</td>
<td>Incidence of PONV reduced</td>
</tr>
<tr>
<td>McNiel et al.</td>
<td>Caesarean delivery</td>
<td>25/25</td>
<td>1.5 mg/kg remifentanil 7.5 mg/ml bilateral, LOR-technique via the triangle of Petit</td>
<td>Spinal anaesthesia with bupivacaine and fentanyl</td>
<td>Pancuronium 1mg, dexamethas 100 mg/ml and morphine</td>
<td>PCA-morphine reduced from 52 mg to 14 mg/24h and from 67 to 15 mg/48h</td>
<td>VAS reduced at rest (2, 4, 6, 12 and 24h post-op) and during mobilization (2, 4 and 6h post-op)</td>
<td>Sedation scores reduced at 6h post-op</td>
<td>No significant difference</td>
</tr>
<tr>
<td>Candy et al.</td>
<td>Total abdominal hysterectomy</td>
<td>24/26</td>
<td>1.5 mg/kg remifentanil 7.5 mg/ml bilateral, LOR-technique via the triangle of Petit</td>
<td>General anaesthesia with propofol and fentanyl</td>
<td>Pancuronium 1mg, dexamethas 100 mg/ml and morphine</td>
<td>PCA-morphine reduced from 40 to 21 mg/24h and from 55 to 27 mg/48h</td>
<td>VAS reduced at rest (4-6h post-op) and during mobilization (2-6h post-op)</td>
<td>Sedation scores reduced</td>
<td>No significant difference</td>
</tr>
<tr>
<td>El-Duwairiy et al.</td>
<td>Laparoscopic cholecystectomy</td>
<td>21/21</td>
<td>15mg lignocaine 5 mg/ml bilateral, UL-guided technique</td>
<td>General anaesthesia with sevoflurane and sufentanil</td>
<td>Pancuronium 1mg, dexamethas 100 mg/ml and morphine</td>
<td>PCA-morphine reduced from 25 to 11 mg/24h</td>
<td>No data</td>
<td>No data</td>
<td>2</td>
</tr>
<tr>
<td>Niraj et al.</td>
<td>Open appendectomy</td>
<td>24/23</td>
<td>20mg lignocaine 5 mg/ml unilateral, UL-guided technique</td>
<td>General anaesthesia with propofol and fentanyl</td>
<td>Pancuronium 1mg, dexamethas 50 mg/ml and morphine</td>
<td>PCA-morphine reduced from 50 to 28 mg/24h</td>
<td>VAS reduced at 30 min and at 24h post-op at rest and on coughing</td>
<td>No data</td>
<td>Reduced at 30 min post-op</td>
</tr>
<tr>
<td>Belavy et al.</td>
<td>Caesarean delivery</td>
<td>23/24</td>
<td>20mg lignocaine 5 mg/ml bilateral, UL-guided technique</td>
<td>Spinal anaesthesia with bupivacaine and fentanyl</td>
<td>Pancuronium 1mg, dexamethas 400 mg/ml and PCA-morphine</td>
<td>PCA-morphine reduced from 36 to 24 mg/24h</td>
<td>No significant difference</td>
<td>No significant difference</td>
<td>Use of anti-emetic reduced. Nausea and vomiting: No significant differences</td>
</tr>
<tr>
<td>Costa et al.</td>
<td>Caesarean delivery</td>
<td>47/49</td>
<td>20mg lignocaine 0.375% bilateral, UL-guided technique</td>
<td>Spinal anaesthesia with bupivacaine, morphine and fentanyl</td>
<td>Pancuronium 1mg, dexamethas 50 mg/ml and morphine on request</td>
<td>No significant difference</td>
<td>No significant difference</td>
<td>No data</td>
<td>No data</td>
</tr>
</tbody>
</table>

LOR, loss of resistance; PCA, patient-controlled analgesia; UL, ultrasound; VAS, visual analogue scale; post-op, post-operatively.
What is the current TAP Block EBM?

- 2010 systematic review of 7 lumbar TAP RCTs exploring postoperative pain relief (180 blocks performed):
 - TAP block is a key component of **multimodal postoperative analgesia**
 - significantly decreased pain scores in 4/7 from 0-6hrs
 - after appendectomy, bowel surgery, and abdominal hysterectomy, significantly decreased pain scores at 24 hrs. The hysterectomy group had decreased pain scores beyond 48hrs
 - significantly decreased 24hr PCA morphine consumption in 6/7
 - significantly decreased sedation scores in ¾
 - significantly decreased morphine consumption in US guided group vs. blind technique.
 - trend towards decreased PONV
What is the study about?

- Typically, **20ml of local anesthetic** (ropivacaine, levobupivacaine) is injected per side, with concentrations based on toxic dose.
- There are currently no studies about the value of increasing the local anesthetic **volume** in order to block more dermatomes and in turn extending the use of the **lumbar** TAP block to a wider range of surgical procedures (supraumbilical incisions)
Question to be Addressed

- Does increasing the volume of local anesthetic increase the spread to higher dermatomes using an ultrasound-guided lumbar TAP block?
Clinical Rationale

• Lumbar TAP block may offer an alternative to epidural use with supraumbilical incisions (current gold standard), particularly in patients who may have contraindications to neuraxial anesthesia (ex. coagulopathy)

• Additionally, if the block is reliably increased with increasing volumes, the need for an additional oblique subcostal block may be eliminated
Research Proposal

• Prospective, randomized, controlled, double blind trial, using abdominal hysterectomies as the surgical model, comparing three volumes of local anesthetics during ultrasound-guided lumbar TAP block and assessing sensory block level as the primary outcome.
Outcome Goals

Primary – determine differences in dermatomal spread by response to cold-sensation to ice and pin prick

Secondary – Pain scores using VAS, opioid consumption, PACU discharge time, post-operative nausea and vomiting (PONV), failure rate, and patient satisfaction
Methodology

3 patient groups
1. 20mls of 0.5% ropivacaine per side
2. 30mls of 0.33% ropivacaine per side
3. 40mls of 0.25% ropivacaine per side

Recruitment to occur at St. Joseph’s pre-operative clinic

All patients will receive the lumbar TAP block under US guidance post-surgery, asleep before extubation (as described by Hebbard)
Post-block Assessment

- Evaluation 2 hrs after block using cold response to ice and loss of pinprick sensation
- Followed for 48 hrs by APS using a pain diary and LIKERT-score for satisfaction. Block level will be assessed at 6, 12, 24, and 48hrs
- All patients will receive a multi-modal approach to pain including PCA morphine, acetaminophen, and NSAIDs. Neuromodulators and long acting opioids will be avoided.
Inclusion/Exclusion Criteria

Inclusion Criteria:
• ages 18 and 70 years, capable of completing a consent form, without previous use of opioids and no previous abdominal wall surgeries, scheduled for abdominal hysterectomy

Exclusion Criteria:
• coagulopathy, local or systemic infection, allergy to local anesthetics, inability to fill an informed consent and BMI > 30.
Research Team

Dr. M. Forero
Dr. A. Heikkila

***Research assistant and epidemiological support required
Pilot Study

A pilot study, following the identical study design, will be performed to assess:
- feasibility
- safety
- recruitment and consent rate
- sample size
The Future of the TAP Block

1. Need to determine procedure specific volumes and concentrations
2. Need to determine the analgesic duration of a single injection and the role of continuous infusion techniques
3. Need to determine if single-injection TAP blocks or continuous infusions offer comparable analgesia to epidurals
4. Need to determine its efficacy with supraumbilical incisions
Questions for you and for us

• Number of patients in pilot study
• Funding and support
Appendix 1

- Tran and Hebbard (2009) – cadaveric study, 20ml of dye injected into triangle of petit (US-guided), T10 (50%), T11 (100%), T12 (100%), L1 (93%)
- McDonnell (2007) – cadaveric and 3 living volunteers, 20ml 0.5% lidocaine (blind), loss of cotton wool and pinprick from T7-L1.
- Lee and Hebbard (2010) – US-guided, sensory block T10-L1 with lumbar TAP block, 20ml of 1% ropivacaine if one sided or 40ml of 0.5% if bilateral
Table 1

Randomized-controlled studies of a TAP block in post-operative pain.

<table>
<thead>
<tr>
<th>References</th>
<th>Surgical procedure</th>
<th>active/ control</th>
<th>TAP block procedure</th>
<th>Intra-operative anesthetic</th>
<th>Post-operative analgesics</th>
<th>Effect on analgesic requirements</th>
<th>Effect on pain</th>
<th>Effect on sedation</th>
<th>Effect on PONV</th>
<th>Oxford Quality Score (0-5)</th>
<th>Oxford Vitalsity Score (1-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonnell et al.</td>
<td>Large bowel resection</td>
<td>16/16</td>
<td>20 ml levobupivacaine 3.75 mg/ml bilateral, LOR-technique via the triangle of Petit</td>
<td>General anesthesia with propofol and fentanyl</td>
<td>Paracetamol 1 g/6 h, diclofenac 100 mg/18 h, and PCA-morphine</td>
<td>PCA-morphine reduced from 80 mg to 22 mg/24 h</td>
<td>VAS reduced at rest and during mobilization at 0-24 h post-op</td>
<td>Sedation scores reduced at 4 and 6 h post-op</td>
<td>Incidence of PONV reduced, PONV scores modestly reduced</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>McDonnell et al.</td>
<td>Caesarean delivery</td>
<td>25/25</td>
<td>1.5 mg/kg ropivacaine 7.5 mg/ml bilateral, LOR-technique via the triangle of Petit</td>
<td>Spinal anesthesia with bupivacaine and fentanyl</td>
<td>Paracetamol 1 g/6 h, diclofenac 100 mg/18 h and PCA-morphine</td>
<td>PCA-morphine reduced from 52 to 14 mg/24 h and from 8 to 15 mg/48 h</td>
<td>VAS reduced at rest (2, 4, 6, 12 and 48 h post-op) and during mobilization (2, 4 and 6 h post-op)</td>
<td>Sedation scores reduced at 6 h post-op</td>
<td>No significant difference</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Caimi et al.</td>
<td>Total abdominal hysterectomy</td>
<td>24/26</td>
<td>1.5 mg/kg ropivacaine 7.5 mg/ml bilateral, LOR-technique via the triangle of Petit</td>
<td>General anesthesia with propofol and fentanyl</td>
<td>Paracetamol 1 g/6 h, diclofenac 100 mg/18 h, and PCA-morphine</td>
<td>PCA-morphine reduced from 40 to 21 mg/24 h and from 8 to 7 mg/48 h</td>
<td>VAS reduced at rest (4-6 h post-op) and during mobilization (2-48 h post-op)</td>
<td>No data</td>
<td>No data</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>El-Dawlatly et al.</td>
<td>Laparoscopic cholecystectomy</td>
<td>21/21</td>
<td>15 ml bupivacaine 5 mg/ml bilateral, UL-guided technique</td>
<td>General anesthesia with sevoflurane and sufentanil</td>
<td>Paracetamol 1 g/6 h, diclofenac 50 mg (prn) and PCA-morphine</td>
<td>PCA-morphine reduced from 23 to 11 mg/24 h</td>
<td>No data</td>
<td>No data</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Niraj et al.</td>
<td>Open appendectomy</td>
<td>24/23</td>
<td>20 ml bupivacaine 5 mg/ml unilateral, UL-guided technique</td>
<td>General anesthesia with isoflurane</td>
<td>Paracetamol 1 g/6 h, diclofenac 50 mg (prn) and PCA-morphine</td>
<td>PCA-morphine reduced from 50 to 28 mg/24 h</td>
<td>VAS reduced at 30 min and at 24 h post-op at rest and on coughing</td>
<td>No data</td>
<td>Reduced at 30 min post-op</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Belavy et al.</td>
<td>Caesarean delivery</td>
<td>23/24</td>
<td>20 ml ropivacaine 5 mg/ml bilateral, UL-guided technique</td>
<td>Spinal anesthesia with bupivacaine and fentanyl</td>
<td>Paracetamol 1 g/6 h, busprofen 400 mg x 3, and PCA-morphine</td>
<td>PCA-morphine reduced from 36 to 24 mg/24 h</td>
<td>No significant difference</td>
<td>No significant difference</td>
<td>Use of anti-emetic reduced. Nausea and vomiting: No significant differences</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Costello et al.</td>
<td>Caesarean delivery</td>
<td>47/49</td>
<td>20 ml ropivacaine 0.375% bilateral, UL-guided technique</td>
<td>Spinal anesthesia with bupivacaine, morphine and fentanyl</td>
<td>Paracetamol 1 g/6 h, diclofenac 50 mg/6 h and morphine on request</td>
<td>No significant difference</td>
<td>No significant difference</td>
<td>No data</td>
<td>No data</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

LOR, loss of resistance; PCA, patient-controlled analgesia; UL, ultrasound; VAS, visual analogue scale; post-op, post-operatively.
References

